

BASE CAMP

CHARACTERIZING ENZYME AND SUBSTRATE INTERACTIONS o

Ruth Morgan, Antasia Anderson, Mia Bierowski

WHAT ARE ENZYMES, AND HOW DO BIOCHEMISTS STUDY THEM?

- Enzymes are proteins that help speed up chemical reactions
- They work by lowering the activation energy of the reaction, which increases the rate of the reaction.
- The substrate enters the active site of the enzyme, the enzyme then changes shape slightly, and the substrate binds to the active site (enzyme-substrate complex), then the products leave the active site of the enzyme
- What if the substrate is a peptide? How does that work?
 - Certain proteases favor one peptide over another
 - The application is based on IMF and characteristics of amino acids/side chains
 - Michaelis-Menten Kinetics: The equation describes the initial velocity as a function of substrate concentration
 - V-max: represents the maximum velocity achieved by the system, at maximum (saturating) substrate concentrations
 - Km: corresponds to the concentration of substrate needed to reach half of the maximum reaction rate.
 - Ex. Papain prefers Valine so it will have a lower Km as there is a higher affinity for the substrate and enzyme compared to Papain and Arginine.

STEPS WE TOOK TO STUDY ENZYMES

SYNTHESIZING

Making the peptide with **PS3**.

PURIFYING

Collecting the sample that should contain the nucleopeptide with the **HPLC**.

CONFIRMATION

Finding the molecular weight to confirm that the enzyme has been purified using the **MALDI**.

TESTING

Collect data on the fluorescence at different concentrations of our reaction to later identify what enzyme we were given using the **Microplate Reader**.

Instruments Used

Synthesizer

HPLC

MALDI

Microplate Reader

Picture of TPVK and TPRK Our substrates

Charts of Bromelain and Papain P2 Sites

Substrate Profiling of Cysteine Proteases Using a Combinatorial Peptide Library Identifies Functionally Unique
Specificities

Hypotheses

With the substrate TPRK, bromelain is expected to have a high Vmax and low Km because bromelain prefers the positively charged R over the hydrophobic V in the P2 substrate position.

With the substrate TPVK, papain is expected to have a higher Vmax and lower Km compared to the TPRK because papain prefers the hydrophobic V over the positively charged arginine.

METHODS

- Creating a standard curve (serial dilutions)
- Used equation C₁V₁=C₂V₂ to create a range of enzyme concentrations (altering substrate concentration to make Michaelis-Menten curve*).

METHODS (continued)

- Solutions A and B were unknown
 - They were either the enzyme Bromelain or Papain.
- Used black absorbance well plates for the Microplate reader.
 - Used 2 plates; One used for Solution A and one used for Solution B. Both had concentrations of TPVK and TPRK with buffer (in separate rows).

Creating The AMC Standard Curve

- We created serial dilutions of AMC
- We used the fluorescence values on the standard curve to turn the fluorescence values into a concentration.

)

Results!!

Results and Data from Solution A TPVK

Results and Data from Solution B TPVK

Results and Data from Solution A TPRK

Results and Data from Solution B TPRK

Conclusion:

		Km (nM)	Vmax (nM/s)
Solution A - Papin	TPVK	89.35	3.02
	TPRK	1504	1.22
Solution B - Bromelain	TPVK	618.06	0.41
	TPRK	62.1	0.62

 We took the slopes for each concentration to apply out Michaelis Menten Analysis to compare the Vmax and Km of each reaction to determine the identity of solution A and B based off their reaction rate.